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Abstract. In this paper, we deal with a multicriteria competitive Markov deci-
sion process. In the decision process there are two decision makers with a com-
petitive behaviour, so they are usually called players. Their rewards are coupled
because depend on the actions chosen by both players in each state of the pro-
cess. We propose as solution of this game the set of Pareto-optimal security
strategies for any of the players in the original problem. We show that this so-
lution set can be obtained as the e‰cient solution set of a multicriteria linear
programming problem.
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1 Introduction

Recently, much attention has been paid to game problems in which the payo¤
is a multiple noncomparable criteria vector [7, 8, 15]. One of the reasons is that
this approach represents better some real world applications of Game Theory
[1, 14]. In fact, each competitive situation that can be modeled as a scalar zero-
sum game has its counterpart as a multicriteria zero-sum game when more than
one scenario has to be compared simultaneously. In these situations, once the
same strategy has to be used in di¤erent scenarios, conflicting interests appear
between di¤erent decision markers as well as within each individual. For in-
stance, the production policies of two firms which are competing for a market
can be seen as a scalar game. However, when they compete simultaneously in
several markets the multicriteria approach has to be adopted.

Since the payo¤ is represented by a vector, there not exists a total order
among the payo¤s. Hence, the classical concept of solution of scalar games can
not be used for this problem. For this reason, new solution concepts have been
proposed in recent years [2, 7, 9, 15] and have been compared with existing



ones. Particularly, the concept of Pareto-optimal security strategy (POSS) be-
comes very important in order to solve matrix multicriteria games [3, 7].

On the other hand, the games considered in this paper are stochastic games
that are a generalization of the Markov decision processes to the case of two
decision makers [6]. Hence, the fortunes of each player are coupled because the
probability transition and the rewards depends of the actions chosen by both
players. Although multicriteria versions of the classical Markov decision pro-
cess has been considered in the literature (see [10, 11]) the multicriteria version
of the stochastic game has not been considered before. Therefore, in this paper
we obtain the set of POSS for this kind of games, and we give an easy method
to compute these solutions.

The paper is organized in three sections. In the second section we give the
notation used in the paper. In Section 3, we present the multicriteria stochastic
game that we are going to study and show that their POSS solution set co-
incides with the set of e‰cient solutions of a multicriteria linear programming
problem. Finally, this result is illustrated with an example.

2 Definitions and notations

We shall consider a process that is observed at discrete time points t ¼ 1; 2;
3; . . . that will sometimes be called stages. At each time t, the state of the pro-
cess will be denoted by St. We assume that St is a random variable that can
take on values from the finite set S ¼ f1; . . . ;Ng which from now on will be
called the state space. The sentence ‘‘the process is in state s at time t’’ will be
synonymous with the event fSt ¼ sg.

We also assume that the process is controlled by two controllers or deci-
sion makers who will be referred to as player 1 and player 2, respectively.
Thus, if the process is in state s A S ¼ f1; . . . ;Ng at time t, player 1 and 2
independently choose actions a1 A A1ðsÞ and a2 A A2ðsÞ and receive rewards
vectors ðr1

1ðs; a1; a2Þ; . . . ; r1
kðs; a1; a2ÞÞ and ðr2

1ðs; a1; a2Þ; . . . ; r2
kðs; a1; a2ÞÞ, re-

spectively. Notice that the main di¤erence with respect to the standard com-
petitive Markov decision processes is that in our model each player receives
k ðk > 1Þ di¤erent rewards. These rewards may be non-comparable quantities
as money, number of employees, etc. Furthermore, we assume that the sta-
tionary transition probabilities depend on the actions of one player (this is
usually called the single controller case, see [4, 5]). If we consider that such
player is the player 1, the transition probabilities are given by

Pðs 0js; a1Þ ¼ PðStþ1 ¼ s 0 jSt ¼ s;A1
t ¼ a1Þ

for all t ¼ 0; 1; 2; . . . : St is the state at time t, and A1
t denotes the action chosen

by player 1 at time t.
Note that the fact that the rewards and the transition probabilities depend

on the actions of both players, as well as on the current state, implies that the
‘‘fate’’ of the two players is coupled in this process, even though their choices
of actions are independent of one another.

The property that the decisions of each controller in state s are invariant
with respect to the time of visit to s sometimes is called the stationarity of the
strategy.

Let FS be the set of stationary strategies of player 1 and GS the ones of
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player 2. Note that, if f ¼ ð f ð1Þ; . . . ; f ðNÞÞ A FS, then each f ðsÞ is a m1ðsÞ-
dimensional probability vector, where m1ðsÞ ¼ jA1ðsÞj, the cardinality of A1ðsÞ.
Denote f ðsÞ :¼ ð f ðs; 1Þ; . . . ; f ðs;m1ðsÞÞÞ where

f ðs; a1Þ ¼ Probability that player 1 chooses action a1 A A1ðsÞ in
state s A S whenever is visited;

verifying that
Pm1ðsÞ

a1¼1
f ðs; a1Þ ¼ 1. In the same way, g ¼ ðgð1Þ; . . . ; gðNÞÞ A GS,

then each gðsÞ is am2ðsÞ-dimensional probability vector, where m2ðsÞ ¼ jA2ðsÞj,
the cardinality of A2ðsÞ. Denote gðsÞ :¼ ðgðs; 1Þ; . . . ; gðs;m2ðsÞÞÞT (notice that
the superscript T either over a vector or a matrix represents the corresponding
transpose) where

gðs; a2Þ ¼ Probability that player 2 chooses action a2 A A2ðsÞ in
state s A S whenever is visited;

verifying that
Pm2ðsÞ

a2¼1
gðs; a2Þ ¼ 1.

A strategy f ðgÞ will be called pure or deterministic if f ðs; a1Þ A f0; 1g for
all a1 A A1ðsÞ, s A S (gðs; a2Þ A f0; 1g, for all a2 A A2ðsÞ, s A S). That is, for
each s A S a pure control selects one particular action a j

s with j ¼ 1; 2 with
probability 1 in state s whenever this state is visited.

It can be easily seen that a strategy f defines a probability transition matrix

Pðs 0js; f Þ ¼
Xm1ðsÞ

a1¼1

f ðs; a1Þpðs 0js; a1Þ :¼ f ðsÞPðs 0jsÞ:

Whenever a superscript 1 (or 2) is associated to a symbol in this section, it
is there to denote a quantity associated with player 1 (or 2). Now, we denote
by ðR1

1; t; . . . ;R
1
k; tÞ (ðR2

1; t; . . . ;R
2
k; tÞ) the reward vector at time t to player 1

(player 2), and ðr1
1ðs; f ; gÞ; . . . ; r1

kðs; f ; gÞÞ (ðr2
1ðs; f ; gÞ; . . . ; r2

kðs; f ; gÞÞ) denot-
ing the immediate expected reward vector to player 1 (player 2) in the state
s, corresponding to a strategy pair ð f ; gÞ A FS 	 GS. The immediate expected
reward in the state s for player 1 and 2, by choosing actions a1 A A1ðsÞ
and a2 A A2ðsÞ is given by the vectors ðr1

1ðs; a1; a2Þ; . . . ; r1
kðs; a1; a2ÞÞ and

ðr2
1ðs; a1; a2Þ; . . . ; r2

kðs; a1; a2ÞÞ, respectively. In this paper, we consider a sto-
chastic zero-sum game, that is,

r1
l ðs; a1; a2Þ þ r2

l ðs; a1; a2Þ ¼ 0 El ¼ 1; . . . ; k

for all s A S, a1 A A1ðsÞ, a2 A A2ðsÞ. Thus, we may drop the superscript 1 and 2
in the reward functions by defining

rlðs; a1; a2Þ :¼ r1
l ðs; a1; a2Þ ¼ 
r2

l ðs; a1; a2Þ El ¼ 1; . . . ; k:

Therefore, for the strategies f , g in the state s we obtain the following ex-
pected rewards:

rlðs; f ; a2Þ ¼
Xm1ðsÞ

a1¼1

f ðs; a1Þrlðs; a1; a2Þ :¼ f ðsÞRlðs; a2Þ
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rlðs; a1; gÞ ¼
Xm2ðsÞ

a2¼1

rlðs; a1; a2Þgðs; a2Þ :¼ Rlðs; a1ÞgðsÞ ð1Þ

rlðs; f ; gÞ ¼
Xm1ðsÞ

a1¼1

Xm2ðsÞ

a2¼1

f ðs; a1Þrlðs; a1; a2Þgðs; a2Þ :¼ f ðsÞRlðsÞgðsÞ ð2Þ

for l ¼ 1; . . . ; k and for all s A S. We denote by:

rlð f ; gÞ ¼ ðrlð1; f ; gÞ; . . . ; rlðN; f ; gÞÞT ; ð3Þ

the vector of the l-th reward in the states of the process.

3 Multicriteria b-discounted Markov decision model

Let fRtgyt¼0 denote the sequence of random reward vector for the period
½t; tþ 1Þ, where Rt ¼ ðR1; t; . . . ;Rk; tÞ. It should be clear that once an initial
state s as well as strategies f and g are specified, then so is the probability
distribution of Rt for every t ¼ 0; 1; 2; . . . : Thus, the expectation of Rt is also
well defined and will be denoted by

EsfgðRtÞ :¼ ðEsfgðR1; tÞ; . . . ;EsfgðRk; tÞÞ

:¼ ðEfgðR1; t jS0 ¼ sÞ; . . . ;EfgðRk; t jS0 ¼ sÞÞ:

The expected reward in the criterion l, at stage t resulting from ð f ; gÞ and an
initial state s, EsfgðRtÞ, is

EsfgðRl; tÞ ¼
XN
s 0¼1

ptðs 0js; f Þrlðs 0; f ; gÞ :¼ Ptðs; f Þrlð f ; gÞ El ¼ 1; . . . ; k

where ptðs 0js; f Þ is the t-step transition probability from s to s 0 in the Markov
chain defined by f and rlð f ; gÞ was defined in (3).

Definition 3.1. The overall discounted value of a strategy pair ð f ; gÞ A FS 	 GS

from the initial state s and for each l ¼ 1; . . . ; k will be given by

vb; lðs; f ; gÞ :¼
Xy
t¼0

b tEsfgðRl; tÞ El ¼ 1; . . . ; k; Es A S

where b A ½0; 1Þ is called the discount factor. We denote

vb; lð f ; gÞ ¼ ðvb; lð1; f ; gÞ; . . . ; vb; lðN; f ; gÞÞT :

Definition 3.2. The multicriteria competitive discounted Markov decision pro-
cess for a strategy pair ð f ; gÞ A FS 	 GS and the initial state s, is the model that
uses as criterion the vector;

ðvb;1ð f ; gÞ; . . . ; vb;kð f ; gÞÞ;

and it is denoted by Gb.
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It is well-known from Markov chain theory that the t-th power of Pð f Þ
contains all such t-step transition probabilities, that is,

Ptðs; f Þ ¼ ðptð1js; f Þ; . . . ; ptðNjs; f ÞÞ

Ptð f Þ ¼ ðptðs 0js; f ÞÞN;N
s¼1; s 0¼1:

Using the notation above, we obtain that

vb; lðs; f ; gÞ ¼
Xy
t¼0

b tPtðs; f Þrlð f ; gÞ El ¼ 1; . . . ; k; Es A S: ð4Þ

This expression can be rewritten as

vb; lð f ; gÞ ¼
Xy
t¼0

b tPtð f Þrlð f ; gÞ El ¼ 1; . . . ; k; ð5Þ

where P0ð f Þ :¼ IN the N 	N identity matrix. It is well known that ðI 
 bPð f ÞÞ
is an invertible matrix and that

ðI 
 bPð f ÞÞ
1 ¼ I þ bPð f Þ þ b2P2ð f Þ þ b3P3ð f Þ þ � � �

Substituting the expression above into (5) we obtain the following compact
matrix expression for the discounted value vector of f and g

vb; lð f ; gÞ ¼ ðI 
 bPð f ÞÞ
1
rlð f ; gÞ l ¼ 1; . . . ; k;

or equivalently:

vb; lð f ; gÞ ¼ rlð f ; gÞ þ bPð f Þvb; lð f ; gÞ l ¼ 1; . . . ; k:

Recall that vb; lð f ; gÞ ¼ ðvb; lð1; f ; gÞ; . . . ; vb; lðN; f ; gÞÞT and that its compo-
nents are then given by

vb; lðs; f ; gÞ ¼ rlðs; f ; gÞ þ bPðs; f Þvb; lð f ; gÞ l ¼ 1; . . . ; k s ¼ 1; . . . ;N:

Within the space of strategies FS 	 GS, for players 1 and 2 we need to decide on
a pair ð f ; gÞ of strategies that constitutes a ‘‘solution’’ to the game. It is clear
that the ideal solution would be ð f ; gÞ such that

vb; lð f ; gÞa vb; lð f ; gÞa vb; lð f ; gÞ El ¼ 1; . . . ; k and

Eð f ; gÞ A FS 	 GS:

However, the ideal pair ð f ; gÞ may not exist in the most cases due to the
vectorial character of vb; l (see [2] for conditions in multicriteria matrix games).
Therefore, we need to propose an alternative solution concept that can be
applied in any case. In order to do that we use the concept of security levels.
Every strategy g A GS ( f A FS) defines security levels vb; lðs; gÞ for all s A S
(vb; lðs; f Þ) as the payo¤s with respect to every criterion vb; lðs; f ; gÞ l ¼ 1; . . . ; k
when player 2 (respectively player 1) bets to minimize (respectively, maximize)
the criterion. Hence,
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vb; lðs; gÞ ¼ max
f AFS

vb; lðs; f ; gÞ l ¼ 1; . . . ; k; Es A S;

vb; lðs; f Þ ¼ min
g AGS

vb; lðs; f ; gÞ l ¼ 1; . . . ; k; Es A S:

The security level vectors are k-tuples denoted by

vbðs; gÞ ¼ ðvb;1ðs; gÞ; . . . ; vb;kðs; gÞÞ Es A S:

vbðs; f Þ ¼ ðvb;1ðs; f Þ; . . . ; vb;kðs; f ÞÞ Es A S:

Notice that the security level vb; lðs; gÞðvb; lðs; f ÞÞ represents the maximum
loss (minimum reward) that player 2 (player 1) can get when he chooses the
strategy gð f Þ. Thus, a possible solution for player 2 (player 1) would be to
find the strategy g( f ) such that vb; lðs; gÞ ¼ ming AGS

vb; lðs; gÞ ðvb; lðs; f Þ ¼
maxf AFS

vb; lðs; f ÞÞ. However, since we are considering a vectorial optimiza-
tion problem these g or f  must be understood as Pareto-optimal solutions.

Let us denote by

vb; lðgÞ ¼ ðvb; lð1; gÞ; . . . ; vb; lðN; gÞÞT El ¼ 1; . . . ; k:

vb; lð f Þ ¼ ðvb; lð1; f Þ; . . . ; vb; lðN; f ÞÞT El ¼ 1; . . . ; k;

and

vbðgÞ ¼ ðvb;1ðgÞ; . . . ; vb;kðgÞÞ

vbð f Þ ¼ ðvb;1ð f Þ; . . . ; vb;kð f ÞÞ:

We note in passing that, for a given strategy g A GS for player 2, the secu-
rity levels vb; lðgÞ for l ¼ 1; . . . ; k, might be obtained for player 1 by di¤erent
strategies. Notice that in the scalar case (k ¼ 1) the POSS solution coincide
with the classical min max solution. In addition, for a general value of k > 1
when there exists the ideal solution, ð f ; gÞ, to the game we have that

vbðs; f ; gÞ ¼ vbðs; gÞ ¼ vbðs; f Þ Es A S:

Using our notation, we now adapt the definition of POSS given in [7] to
this di¤erent class of games.

Definition 3.3. A strategy g A GS is a Pareto-optimal security strategy (POSS)
for player 2 i¤ there is no g A GS such that vbðgÞb vbðgÞ, vbðgÞ0 vbðgÞ. Sim-
ilarly, one can define POSS for player 1.

POSS always exist provided that the criterion vectors ðvb; lð f ; gÞÞ are con-
tinuous and the decision space is compact (see Corollary 3.2.1. in [12]).

Once we have defined the POSS solution concept, we characterize the whole
set of Pareto-optimal security strategies. To do that, we propose the following
multicriteria linear programming problem that we will use in the next theo-
rem:
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min
XN
s¼1

v1ðsÞ; . . . ;
XN
s¼1

vkðsÞ

s:t:

vlðsÞbRlðs; a1ÞgðsÞ þ bPðs; a1Þvl Es A S; Ea1 A A1ðsÞ; l ¼ 1; . . . ; k

X
a2 AA2ðsÞ

gðs; a2Þ ¼ 1 Es A S

gðs; a2Þb 0 Ea2 A A2ðsÞ; Es A S

vl ¼ ðvlð1Þ; . . . ; vlðNÞÞT ; l ¼ 1; . . . ; k: ð6Þ

Theorem 3.1. The Pareto-solution set of Problem (6) coincides with the Pareto-
optimal security strategies set of Game Gb.

Proof. Let us consider the following problem

min v1; . . . ; vk

s:t:

vlðsÞb rlðs; f ; gÞ þ bPðs; f Þvl Es A S; Ef A FS; l ¼ 1; . . . ; k

X
a2 AA2ðsÞ

gðs; a2Þ ¼ 1 Es A S

gðs; a2Þb 0 Ea2 A A2ðsÞ; Es A S

vl ¼ ðvlð1Þ; . . . ; vlðNÞÞT ; l ¼ 1; . . . ; k

Since the strategies chosen by both players in each state are independent, the
problem above can be equivalently formulated as follows;

min
XN
s¼1

v1ðsÞ; . . . ;
XN
s¼1

vkðsÞ

s:t:

vlðsÞb rlðs; f ; gÞ þ bPðs; f Þvl Es A S; Ef A FS; l ¼ 1; . . . ; k

X
a2 A A2ðsÞ

gðs; a2Þ ¼ 1 Es A S

gðs; a2Þb 0 Ea2 A A2ðsÞ; Es A S

vl ¼ ðvlð1Þ; . . . ; vlðNÞÞT ; l ¼ 1; . . . ; k ð7Þ
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Any feasible solution ðvlðsÞÞ1alak
s AS

satisfies for any g A GS,

vlðsÞb rlðs; f ; gÞ þ bPðs; f Þvl Es A S; Ef A FS

The above expression can be equivalently written after rearranging the com-
ponents of ðvlðsÞÞ1alak

s AS
as

vl b rlð f ; gÞ þ bPð f Þvl Ef A FS:

It implies that

vl b rlð f ; gÞ þ bPð f Þvl

b rlð f ; gÞ þ bPð f Þrlð f ; gÞ þ b2P2ð f Þvl

..

. ..
.

b rlð f ; gÞ þ bPð f Þrlð f ; gÞ þ b2P2ð f Þrlð f ; gÞ þ b3P3ð f Þrlð f ; gÞ þ � � �

¼ ½I 
 bPð f Þ�
1
rlð f ; gÞ ¼ vb; lð f ; gÞ Ef A FS:

Thus,

vl b vb; lðgÞ El ¼ 1; . . . ; k: ð8Þ

Hence, notice that the solutions of Problem (7) give us strategies with a
worse objective value than the security strategies for any g A GS.

Therefore, given g A GS, we have that vb; lðgÞb vb; lð f ; gÞ for all f A FS.

Besides, since vb; lð f ; gÞ ¼ ðI 
 bPð f ÞÞ
1
rlð f ; gÞ then vb; lðgÞb ðI 
 bPð f ÞÞ
1 �

rlð f ; gÞ Ef A FS, that is, vb; lðgÞb rlð f ; gÞ þ bPð f Þvb; lðgÞ Ef A FS. Thus, we
obtain that for a given g A GS the vector ðvb;1ðgÞ; . . . ; vb;kðgÞ; gÞ is a feasible
solution in Problem (7).

Moreover, let ðv
1 ; . . . ; v


k ; g

Þ be a Pareto-optimal solution of Problem (7).
By (8) since g A GS we must have that v

l b vb; lðgÞ l ¼ 1; . . . ; k. Therefore,
since ðvb;1ðgÞ; . . . ; vb;kðgÞ; gÞ is feasible we must have that v

l ¼ vb; lðgÞ l ¼
1; . . . ; k. Otherwise, ðv

1 ; . . . ; v

k ; g

Þ would not be Pareto-optimal. This argu-
ment proves that the Pareto-optimal security levels and the Pareto-optimal
security strategies for the multicriteria b-discounted Markov decision problem
are given by the Pareto-optimal solutions of Problem (7).

Finally, we prove that Problem (7) is equivalent to Problem (6). Using (2),
the first constraint of Problem (7) can be written as:

vlðsÞb rlðs; f ; gÞ þ bPðs; f Þvl ¼ f ðsÞRlðsÞgðsÞ þ bf ðsÞPðsÞvl

Es A S; Ef A FS;

where PðsÞ ¼ ðpðs 0js; a1ÞÞm
1ðsÞ;N

a1¼1; s 0¼1
. Since, the second part of this inequality is

linear in f ðsÞ and f ðsÞ is a m1ðsÞ dimensional probability vector, that is,
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f ðsÞb 0 and
Pm1ðsÞ

a1¼1
f ðs; a1Þ ¼ 1, we have that this constraint is valid to any

a1 A A1ðsÞ. Thus, it can be formulated equivalently as:

vlðsÞb rlðs; a1; gÞ þ bPðs; a1Þvl Es A S; Ea1 A A1ðsÞ:

Hence, Problem (7) can be rewritten equivalently as;

min
XN
s¼1

v1ðsÞ; . . . ;
XN
s¼1

vkðsÞ

s:t:

vlðsÞb rlðs; a1; gÞ þ bPðs; a1Þvl Es A S; Ea1 A A1ðsÞ; l ¼ 1; . . . ; k

X
a2 AA2ðsÞ

gðs; a2Þ ¼ 1 Es A S

gðs; a2Þb 0 Ea2 A A2ðsÞ; Es A S

vl ¼ ðvlð1Þ; . . . ; vlðNÞÞT ; l ¼ 1; . . . ; k: ð9Þ

Notice, that using the equality (1), this problem is equivalent to Problem
(6). r

It is worth noting the relationship existing between POSS solutions for this
kind of multicriteria and minmax strategies in the scalar case. In fact, both can
be obtained solving adequate linear programs: in the scalar case the optimal
solutions are obtained using simplex algorithm and in the multiple criteria case
using multicriteria simplex algorithm (Adbase [13]).

Example 3.1. Let S ¼ f1; 2g, A1ðsÞ ¼ A2ðsÞ ¼ f1; 2g for s A S, b ¼ 0:7 and the
reward and transition data be

ðR1ð1Þ;R2ð1ÞÞ ¼
ð10; 6Þ ð
6; 4Þ
ð
4; 0Þ ð8; 3Þ

� �

ðR1ð2Þ;R2ð2ÞÞ ¼
ð
2; 0Þ ð5; 3Þ
ð4; 2Þ ð
10;
10Þ

� �

For s ¼ 1,

Pð1Þ ¼ ðpðs 0j1; a1ÞÞ2;2
a1¼1; s 0¼1

¼ 0:5 0:5

0:8 0:2

� �

For s ¼ 2,

Pð2Þ ¼ ðpðs 0j2; a1ÞÞ2;2
a1¼1; s 0¼1

¼ 0:3 0:7

0:9 0:1

� �
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For these data the formulation of Problem (6) is as follows:

min v1ð1Þ þ v1ð2Þ; v2ð1Þ þ v2ð2Þ

s:t

v1ð1Þb 10gð1; 1Þ 
 6gð1; 2Þ þ 0:7ð0:5v1ð1Þ þ 0:5v1ð2ÞÞ

v1ð1Þb
4gð1; 1Þ þ 8gð1; 2Þ þ 0:7ð0:8v1ð1Þ þ 0:2v1ð2ÞÞ

v2ð1Þb 6gð1; 1Þ þ 4gð1; 2Þ þ 0:7ð0:5v2ð1Þ þ 0:5v2ð2ÞÞ

v2ð1Þb 0gð1; 1Þ þ 3gð1; 2Þ þ 0:7ð0:8v2ð1Þ þ 0:2v2ð2ÞÞ

v1ð2Þb
2gð2; 1Þ þ 5gð2; 2Þ þ 0:7ð0:3v1ð1Þ þ 0:7v1ð2ÞÞ

v1ð2Þb 4gð2; 1Þ 
 10gð2; 2Þ þ 0:7ð0:9v1ð1Þ þ 0:1v1ð2ÞÞ

v2ð2Þb 0gð2; 1Þ þ 3gð2; 2Þ þ 0:7ð0:3v2ð1Þ þ 0:7v2ð2ÞÞ

v2ð2Þb 2gð2; 1Þ 
 10gð2; 2Þ þ 0:7ð0:9v2ð1Þ þ 0:1v2ð2ÞÞ

gð1; 1Þ þ gð1; 2Þ ¼ 1

gð2; 1Þ þ gð2; 2Þ ¼ 1

gð1; 1Þ; gð1; 2Þ; gð2; 1Þ; gð2; 2Þb 0

The extreme Pareto-optimal solutions ððv1ð1Þ; v1ð2Þ; v2ð1Þ; v2ð2Þ; gð1; 1Þ;
gð1; 2Þ; gð2; 1Þ; gð2; 2ÞÞÞ of the problem above are:

fð6:86; 7:11; 12:31; 8:58; 0:5; 0:5; 0:4; 0:6Þ; ð44:62; 83:09; 9:99; 7:13; 0; 1; 0:48;

0:52Þ; ð10:46; 8:32; 11:76; 8:24; 0:38; 0:62; 0:42; 0:58Þg:

Notice that the last four components of these vectors give the Pareto-optimal
security strategies for player 2.

4 Concluding remarks

In this paper, we have presented an extension of a multicriteria Markov deci-
sion process where there exist two decision makers with opposite objectives.

In order to solve this game, we note that its objective function is not linear
what implies additional di‰culties to deal with. However, we show that the
POSS solution set of this game coincides with the Pareto-solution set of a mul-
ticriteria linear programming problem. Therefore, we reduce the resolution of
this game to solve a multicriteria linear programming problem, which can be
done by well-known algorithms (see [13]).
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